Thursday, 2023/03/30

  • CS/AI
  • C
  • TITECH
  • Switch Language
    • ja日本語 (Japanese)
    • enEnglish

Shimosaka Research Group

pursuing MIUBIQ (machine intelligence in UbiComp Research)

  • Home
    • Members
    • Location
  • News
  • Projects
  • Publications
  • Awards
  • Archives
    • Codes
    • Datasets
Navigation
News Presenting our paper on fine-grained urban dynamics prediction with hierarchical Bayes on PAKDD 2021

Presenting our paper on fine-grained urban dynamics prediction with hierarchical Bayes on PAKDD 2021

2021/05/11 | NewsPresentations | 1201 views |

The 25th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD-2021) is May 11-14, 2021 at online conference.

The following oral presentation will be delivered.

In recent years, the use of smartphone Global Positioning System (GPS) logs has accelerated the analysis of urban dynamics. Predicting the population of a city is important for understanding the land use patterns of specific areas of interest. The current state-of-the-art predictive model is a variant of bilinear Poisson regression models. It is independently optimized for each point of interest (POI) using the GPS logs captured at that single POI. Thus, it is prone to instability during fine-scale POI analysis. Inspired by the success of topic modeling, in this study, we propose a novel approach based on the hierarchical Dirichlet process mixture regression to capture the relationship between POIs and upgrade the prediction performance. Specifically, the proposed model enables mixture regression for each POI, while the parameters of each regression are shared across the POIs owing to the hierarchical Bayesian property. The empirical study using 32 M GPS logs from mobile phones in Tokyo shows that our model for large-scale finer-mesh analysis outperforms the state-of-the-art models. We also show that our proposed model realizes important applications, such as visualizing the relationship between cities or abnormal population increase during an event.

-presentation information-
Research Session 12 (May 14, 2021, 10:15 – 12:30 Indian Standard Time (IST) (UTC + 05:30))

Yuta Hayakawa*, Kota Tsubouchi**, Masamichi Shimosaka*:
Simultaneous multiple POI population patternanalysis system with HDP mixture regression
(*Tokyo Institute of Technology, **Yahoo Japan Corporation)

  • tweet

Comments are disabled for this post

Social Networks

  • twitter
  • rss

Recent News

  • Device-Free Multi-Person Indoor Localization Using the Change of ToF 2023/03/03
  • Presenting our paper on Device-Free Multi-Person Indoor Localization Using the Change of ToF at PerCom2023 2023/02/28
  • Our paper on Efficient Adaptive Beacon Deployment Optimization for Indoor Crowd Monitoring has been published in IMWUT. 2023/01/24
  • Presenting our paper on Robust Continuous MaxEnt IRL with RRT at IV2022 2022/06/09
  • Presenting our paper on Efficient Indoor Localization Model Construction by Sequential Recommendation of Data Gathering Position based on Bayesian Optimization at IPIN2021 2021/11/29
  • Adaptive incremental beacon placement optimization for crowd density monitoring applications 2021/11/01
  • Presenting 2 papers at ACM SIGSPATIAL 2021 2021/11/01
  • Fine-grained Urban Dynamics Prediction using Large-Scale Mobile Phone Location Data 2021/10/05
  • Robustifying Wi-Fi localization by Between-Location data augmentation 2021/09/28
  • Our paper on robustifying Wi-Fi localization by “Between-Location” data augmentation has been published in IEEE Sensors Journal 2021/09/17

Search

Copyright 2015 · Shimosaka Research Group at TITECH