Thursday, 2023/03/30

  • CS/AI
  • C
  • TITECH
  • Switch Language
    • ja日本語 (Japanese)
    • enEnglish

Shimosaka Research Group

pursuing MIUBIQ (machine intelligence in UbiComp Research)

  • Home
    • Members
    • Location
  • News
  • Projects
  • Publications
  • Awards
  • Archives
    • Codes
    • Datasets
Navigation
Projects Robust indoor localization across smartphone models with ellipsoid features from multiple RSSIs

Robust indoor localization across smartphone models with ellipsoid features from multiple RSSIs

2017/10/23 | Projects | 3218 views |
device-dependency

RSSI-based indoor localization for mobile devices has become important as the basis technology for various ubiquitous computing applications.
With the widespread use of smartphones in the last decade, device dependency must be considered to avoid performance degradation, while most of the recent localization approaches assume that all the smartphone models have the same device characteristics.

We propose a novel feature representation based on multiple RSSIs for compensating performance degradation
against smartphone models changes.

In contrast to the previous feature representation based on a single RSSI, our new feature representation, which we call Ellipsoid features, employs tuples of pair of RSSIs to eliminate device dependence in the path loss model for wave propagation.

Experimental result using smartphone devices including Android Nexus5, Nexus5X, Nexus6P, and Xperia X Performance shows that our approach achieves superior performance over the state-of-the-art indoor localization models as well as robust performance against device changes.

ellipsoid-feature

Publications

Sugasaki, Masato and Shimosaka, Masamichi
Robust indoor localization across smartphone models with ellipsoid features from multiple RSSIs.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3, pp. 103:1–103:16, 2017.

  • tweet

Comments are disabled for this post

Social Networks

  • twitter
  • rss

Recent News

  • Device-Free Multi-Person Indoor Localization Using the Change of ToF 2023/03/03
  • Presenting our paper on Device-Free Multi-Person Indoor Localization Using the Change of ToF at PerCom2023 2023/02/28
  • Our paper on Efficient Adaptive Beacon Deployment Optimization for Indoor Crowd Monitoring has been published in IMWUT. 2023/01/24
  • Presenting our paper on Robust Continuous MaxEnt IRL with RRT at IV2022 2022/06/09
  • Presenting our paper on Efficient Indoor Localization Model Construction by Sequential Recommendation of Data Gathering Position based on Bayesian Optimization at IPIN2021 2021/11/29
  • Adaptive incremental beacon placement optimization for crowd density monitoring applications 2021/11/01
  • Presenting 2 papers at ACM SIGSPATIAL 2021 2021/11/01
  • Fine-grained Urban Dynamics Prediction using Large-Scale Mobile Phone Location Data 2021/10/05
  • Robustifying Wi-Fi localization by Between-Location data augmentation 2021/09/28
  • Our paper on robustifying Wi-Fi localization by “Between-Location” data augmentation has been published in IEEE Sensors Journal 2021/09/17

Search

Copyright 2015 · Shimosaka Research Group at TITECH